
AUTOMATIC ADAPTATION OF STREAMING MULTIMEDIA CONTENT IN A DYNAMIC

AND DISTRIBUTED ENVIRONMENT

 Andreas Hutter
1
, Peter Amon

1
, Gabriel Panis

1
, Eric Delfosse

2
, Michael Ransburg

3
, Hermann

Hellwagner
3

1
Siemens AG,

2
IMEC,

3
Klagenfurt University

ABSTRACT

The diversity of end-terminal and access network capabilities as

well as the dynamic nature of wireless connections pose

significant challenges to providers of multimedia streaming

services. In this paper, we present a system based on MPEG-21

Digital Item Adaptation (DIA) technologies that automatically

adapts scalable multimedia resources, like upcoming MPEG-4

Scalable Video Coding (SVC) streams, in a generic and

transparent way to the user and session context. This context

includes terminal and network capabilities as well as user

characteristics. A server side adaptation engine reacts to context

changes by dynamic decision taking and accordingly modified

bitstream adaptation. Furthermore, novel concepts are presented

that facilitate multimedia adaptation in a distributed fashion

along the delivery path.

1. INTRODUCTION

Adaptation of multimedia resources is a valuable technique for

service providers to: a) target a wide range of devices/networks

and consequently users, b) maximize the customers’ experience

and c) minimize storage and maintenance requirements on the

server side. In order to reduce complexity, it is desired that the

adaptation decision taking and resource adaptation are automatic

and generic and media format independent. Adaptation is

especially advantageous in a streaming scenario, which imposes

additional requirements such as dynamism and low delay. The

technologies presented in this paper build a multimedia resource

adaptation architecture, including the decision taking and

resource adaptation mechanisms. The approach facilitates the

scalability properties of recent media codecs such as the scalable

video codec currently under study for standardization in MPEG-

4 SVC [2]. Our adaptation engine is based on MPEG-21 DIA

technologies [1] that have been extended to support dynamic

adaptations. Furthermore, a scenario has been investigated where

the adaptation is applied in an intermediate network node instead

of, or in addition to, the server. This scenario imposes some

additional requirements which will be discussed. The paper is

organized as follows. In Section 2 application scenarios are

provided for the dynamic and distributed adaptation cases. In

Section 3 the overall adaptation architecture is presented,

followed by an overview of the dynamic decision taking and

resource adaptation technologies in Section 4. In Section 5 our

approach for the distributed adaptation scenario is presented,

followed by concluding remarks in Section 6.

2. APPLICATION SCENARIOS

2.1. Dynamic Adaptation

Dynamic adaptation is understood to be the adaptation of

multimedia resources during the streaming session. This does

not exclude adaptation at the beginning of the session which is

simply considered a subset of the dynamic adaptation category.

A use case where the need for dynamic adaptation arises is

presented in the following. A user spends a lot of time on the

road and therefore he receives information and multimedia

content on his mobile smart phone. His phone is usually

connected to the UMTS network, however since it has also an

integrated WLAN module, it can seamlessly switch to the higher

bandwidth LAN network once an access point is detected.

Assume a user is sitting in a café accessing his multimedia

content over WLAN using the access point provided by the café.

The content is adapted and streamed by the adaptation engine

and streaming server, respectively. The adaptation process takes

into account the capabilities of the mobile device and the WLAN

network characteristics. When the user leaves the café, his

mobile phone seamlessly switches to the UMTS network. The

change in the network characteristics is detected and the

adaptation engine quickly modifies the adaptation parameters

accordingly to further the bitrate of the streamed resources.

2.2. Distributed Adaptation

Figure 1: Distributed Adaptation Scenario

Figure 1 illustrates a use case for distributed adaptation: Imagine

an Internet-based pay-per-view provider that streams the same

movie continuously (e.g., for an entire week) on the same

“channel”. For a fee, users can join this channel for the duration

of the movie. After the payment (which is not addressed here),

the user sends a request to join the channel to the server. The

server then selects the most appropriate adaptation node (e.g.,

based on a location description included in the user’s request)

and forwards the request to the adaptation node. The adaptation

node responds to the request and receives context information

from the user (e.g., terminal capabilities and current network

conditions). It then compares this context information with the

context information of all other users which it serves on this

channel and decides whether the quality of the stream received

from the server is sufficient or not. If not, a higher quality stream

is requested from the server. The content is adapted for every

user on the adaptation node in a generic way, based on content-

related metadata that are streamed alongside the content.

3. ADAPTATION ENGINE ARCHITECTURE

Figure 2 gives an overview of the adaptation engine architecture

and its internal (meta-) dataflow, which will be explained step by

step in the sequel. The central black-bordered box represents the

actual adaptation engine with a generic design such that the same

block can be employed on the server as well as on the adaptation

node. This is graphically represented by the switch between

steps 1 and 2 in Figure 2 (also see Figure 1).

Inside the adaptation engine, the adaptation engine control

implements the interface to the streaming server and file reader.

Furthermore, as its name indicates, it controls the internals of the

adaptation engine by activating the different modules at the

appropriate time. Finally it is also responsible for most of the

internal communication between the different modules.

Depending on the application scenario the adaptation

engine either resides at the server or at a network node. In the

former case the content is retrieved from a local repository

through the file reader that fragments and packetizes the

respective media and metadata content to enable streaming (1a).

In the latter case the content and its related metadata are

retrieved from the network (1b). In both cases the packetized

(meta-) data is presented to the depacketizers to extract the

respective media and metadata fragments (2a + b).

Part of the depacketized content-related metadata is then

presented to the optimizer (3), which is responsible for

determining the optimum adaptation parameters settings

matching the usage environment constraints like, e.g., available

bandwidth, display resolution, etc. This module thus performs

the adaptation decision taking process referred to earlier.

All the (static) usage environment constraints are stored in a

central database by the context aggregation tool except the

dynamically changing bandwidth, which is provided by the

bandwidth estimation tool. This tool regularly probes the

transmission channel to obtain bandwidth estimates (5a). All this

information is then presented to the optimizer (4 + 5b), which

computes the optimum adaptation parameters.

Next, these parameters are fed into the resource adapter (6)

that performs the actual adaptation of the resource (8) using the

remaining part of the content-related metadata (7). Finally, the

adapted media (10) and metadata (9a + b) are packetized and

transmitted through the streaming server (11a + b).

4. DYNAMIC ADAPTATION

Often the context of a user accessing a multimedia service

changes during the session. The most common cases involve

fluctuations of the network bandwidth, especially in mobile

networks, or the roaming scenario described in Section 2.1. It is

essential that the adaptation engine can dynamically react to

changing context information to generate a new adaptation

decision and apply this decision to the remainder of the resource

to be streamed. As mentioned earlier all static context

information can be dealt with as a sub-case of the dynamic case.

In the next two sub-sections, technologies to enable dynamic

decision taking and resource adaptation are presented.

4.1. Dynamic Decision Taking

As described above, the optimizer is responsible for determining

the optimum adaptation parameters given some usage environ-

ment constraints. This process requires at least the knowledge of

the adaptation possibilities, preferably complemented by the

resource and quality characteristics that will result from a certain

adaptation choice. On the other hand it requires a set of context

descriptor values. In the case of a scalable video stream like

MPEG-4 SVC the adaptation options would cover all supported

combinations of spatial, temporal and SNR resolution resulting

in a certain bit rate, while the characteristics of the adapted

streams could be described by the resulting average PSNR. The

values of the context descriptors would e.g. correspond to the

screen size or the current network connection. MPEG-21 DIA

specifies two descriptors for storing such information:

AdaptationQoS (AQoS) and Universal Constraints Descriptor

(UCD) [1]. AQoS describes the relationship between

Adaptation Engine Control

Network

Media &

Metadata

Repository

S
trea

m
in

g
 S

erv
er

Media

Depacketizer

Metadata

Depacketizer

Metadata

Packetizer

Media

Packetizer

Optimizer

Resource

Adapter

Context Aggregation Tool

Bandwidth

Estimation

11a

S
tr

ea
m

in
g

S
er

v
er

F
il

e

R
ea

d
er

Network

Server

Adaptation

Node

11b

10

9b

9a

8

7 6

5b 5a

4

3

2b

2a

1b

1a

Adaptation Engine Control

Network

Media &

Metadata

Repository

S
trea

m
in

g
 S

erv
er

Media

Depacketizer

Metadata

Depacketizer

Metadata

Packetizer

Media

Packetizer

Optimizer

Resource

Adapter

Context Aggregation Tool

Bandwidth

Estimation

11a

S
tr

ea
m

in
g

S
er

v
er

F
il

e

R
ea

d
er

Network

Server

Adaptation

Node

11b

10

9b

9a

8

7 6

5b 5a

4

3

2b

2a

1b

1a

Figure 2: Adaptation Engine Architecture and its Internal (Meta-)Dataflow (dotted: media & metadata content, solid gray:

media content, hatched: content-related metadata, white: context metadata, solid black: adaptation parameters)

Optimizer

ADU2 ADU1 AQoSEngine… ADU1

AQoS

BSDLink

Optimizer

ADU2 ADU1 AQoSEngine… ADU1

AQoS

BSDLink

Figure 3: Dynamic Decision Taking and Resource Adaptation

adaptation parameters, resulting resource characteristics, quality

and possibly other parameters. The UCD may complement this

information by mathematically specifying constraints imposed

by the usage environment context or other sources. Furthermore,

an optimization function can be declared in the UCD to control

the selection of the best adaptation option. Further information

on the functionality of these descriptors in the decision taking

process can be found in [3].

The problem of adaptation decision taking in a dynamic

streaming environment is twofold: (1) the actual resource

characteristics, e.g. bitrate, and (2) the context, e.g. bandwidth,

may vary a lot between bitstream fragments during streaming. To

cope with this the AQoS can be fragmented into so-called

Adaptation Units (ADUs) using its switching mechanism [1] [3].

An ADU describes the adaptation options and resulting

characteristics of one or more successive bitstream fragments

(BSFs). Each BSF may correspond to a number of GOPs in the

case of SVC. Each ADU can be transmitted and processed

independently of one another. This is shown in the upper part of

Figure 3, where ADU1 contains adaptation information of BSF 1

and 2, and ADU2 of BSF 3 and 4, etc.

Selecting the granularity of an ADU is arbitrary and mainly

triggered by trading-off the accuracy with the verbosity of the

AQoS description. Indeed, a small number of ADUs, each

describing the average characteristics of a large sequence of

BSFs, results in a small AQoS description, but which might be

imprecise with respect to the actual characteristic, e.g. bitrate, of

each adapted BSF. Hence, the optimizer might produce poor

adaptation decisions. A large number of ADUs, on the other

hand, each describing a small sequence of BSFs, will result in a

larger but more precise AQoS description and therefore better

adaptation decisions.

4.2. Dynamic Resource Adaptation

When adaptation decisions have been obtained, another MPEG-

21 DIA descriptor, BSDLink, specifies the link between the

output of the optimizer and the input of the resource adapter

The resource adapter for scalable resources is based on the

generic Bitstream Syntax Description (gBSD) concepts specified

in the MPEG-21 DIA standard [1]. In brief, the adaptation pro-

cess is abstracted by the use of a high level XML description of

the resource’s bitstream syntax, the gBSD. By first adapting the

gBSD and then processing the modified gBSD to generate the

adapted bitstream, the resource adaptation engine is abstracted

from the bitstream syntax specifics [5]. In the case of SVC the

gBSD will e.g. provide references to independent pieces of the

bit stream that need to be dropped when reducing the video

format from e.g. CIF to QCIF. The basic concept described in

 [1] has been extended to better support dynamic adaptations in a

streaming scenario. Instead of transforming and processing the

entire gBSD at once, the description is fragmented into smaller

descriptions called Process Units (PUs) [5]. The fragmentation

itself is arbitrary, the only requirement imposed is that a PU can

be transformed and processed independently of other PUs i.e.

there should be no dependencies between PUs for their

transformation and processing. An example for the

corresponding syntax structure in SVC could be a GOP.

The lower part of Figure 3 illustrates the dynamic resource

adaptation architecture. The gBSD has been fragmented into

process units (PU1, PU2, …), each describing a fragment of the

bitstream (BSF1, BSF2, …). The resource adapter begins

processing the PUs and corresponding BSFs sequentially. First

each PU is transformed using an XSLT stylesheet that applies all

the modifications on the bitstream fragment. The transformed

PU (T-PU) is then input to the gBSDtoBin process [1] along

with the bitstream fragment. The gBSDtoBin processes the PU

to generate the adapted bitstream fragment. Then the T-PU and

the adapted bitstream fragment (A-BSF) are ready to be

streamed. It should be noted that for simplicity the BSDLink that

provides the link between the optimizer and resource adapter

related descriptors has been omitted in this description of the

process. Applying the adaptation piece-wise has several

advantages including reduction in memory requirements, low

initial delay, applicability of the adaptation process in a

distributed scenario, as well as a facility to dynamically change

the adaptation parameters.

5. DISTRIBUTED ADAPTATION

In multimedia resource streaming scenarios supporting the

adaptation on intermediate network nodes is essential to enable

scenarios as the one depicted in Figure 1. This requires,

however, the transmission of media data as well as its associated

metadata to the adaptation node. In this section, we will illustrate

the architecture of the adaptation node and introduce the

mechanisms used for the transport of the metadata.

5.1. Adaptation Node Architecture

The architecture of the adaptation node can be coarsely divided

into three modules (Figure 4). The context aggregation module

is responsible for collecting context information from client

nodes located downstream on the delivery path, and for

providing this information to the other modules. Based on this

context information, the adaptation engine can decide which

adaptation it should apply to the multimedia content that is to be

transmitted to the clients (cf. Section 3). The context information

is also processed by the context merging module, which

compiles a set of context descriptors each of which relates to the

highest quality which any of the connected terminals can

consume. The merged context information is enriched by

adaptation-node specific descriptors, describing for example the

supported adaptations and sent to the server.

Based on the merged context information, the server can

adapt the content to the quality level requested by the adaptation

node. The adapted content corresponds to the highest media

quality which satisfies the requests of all terminals connected to

the adaptation node. The server then delivers this content

together with its content-related metadata, i.e., the BSDLink, the

gBSD and the associated transformation style sheet, as well as

the AQoS and UCD descriptions [1], to the adaptation node.

Subsequently, the adaptation node replicates and provides

the content to each connected terminal in an optimum way. To

that end, the adaptation node further adapts and delivers each of

the content streams according to the individual context

descriptions received from the terminals. Thus, each client can

be supplied with the highest quality stream that is possible under

the constraints of its specific network, user, and terminal context.

Figure 4: Adaptation Node Architecture

5.2. Adaptation Metadata Transport

Each of the descriptions introduced in Section 4 needs to be

transported from the content provider or content consumer to the

adaptation engine. Different transport formats and protocols are

being used for that purpose.

The context information is transmitted independently from

and not synchronized with the media content and the content-

related metadata. Therefore, one of the means to transport XML

information, such as the HyperText Transfer Protocol (HTTP) or

the Simple Object Access Protocol (SOAP), can be employed. In

our approach, HTTP is used for the transport of the context

information, and the MPEG-21 DIA Configuration descriptor

 [1] is used to negotiate the context information set.

In general, the BSDLink and the gBSD Transformation

need to be available at the adaptation engine before the

streaming of the media content (and associated metadata) starts.

Therefore, they are transported within the Session Description

Protocol (SDP) during the content negotiation phase, using an

attribute parameter. Since the gBSD and AQoS are associated

with a streaming resource – the media content – that is usually

transported by means of the Real-time Transport Protocol (RTP),

the gBSD and AQoS are transported using RTP as well. Hence,

these descriptions are fragmented for the transport using the

concepts of ADUs and PUs (cf. Section 4) and synchronized

with the resource. On the stream level, there are three options of

how to transport this type of metadata. One can either multiplex

the metadata into the media content stream, use one single

metadata stream, or use a separate metadata stream for each kind

of metadata. Evaluations show that the most feasible way is to

transport each metadata stream in a separate RTP stream. A

detailed description and evaluation of the mechanisms needed to

enable the transport and processing of this type of metadata is

provided in [6] including further considerations regarding the

fragmentation of the metadata and the synchronization with the

media data, both on the transport and the processing levels,

6. SUMMARY

In this paper, we presented a generic architecture of a

multimedia adaptation engine supporting dynamic decision

taking and resource adaptation. It is based on MPEG-21 DIA

descriptors and forms a generic adpatation framework that can

support adaptation across codecs and media types, such as. the

upcoming MPEG-4 SVC The MPEG-21 DIA architecture was

extended to additionally support dynamic decision taking and

resource adaptation. Furthermore, another extension for the

scenario where the adaptation is distributed over the server and

intermediate network nodes, was also discussed.

7. ACKNOWLEDGEMENT

Part of this work was supported by the European Commission in

the context of the DANAE project (IST-1-507113) [7].

8. REFERENCES

[1] ISO/IEC 21000-7: 2004: Information Technology —

Multimedia Framework (MPEG-21) — Part 7: Digital Item

Adaptation, 2004.

[2] H. Schwarz, D. Marpe, T. Wiegand, “MCTF and Scalability

extension of H264/AVC”, Picture Coding Symposium (PCS)

2004, December 2004

[3] D. Mukherjee, E. Delfosse, J.G. Kim and Y. Wang,

“Optimal Adaptation Decision-Taking for Terminal and Network

Quality of Service,” to appear in IEEE Transactions on

Multimedia, vol. 7, no. 2, April 2005.

[4] C. Timmerer, G. Panis, and E. Delfosse, “Piece-wise

Multimedia Content Adaptation in Streaming and Constrained

Environments (invited paper),” Proceedings of the Sixth

International Workshop on Image Analysis for Multimedia

Interactive Services (WIAMIS 2005).

[5] S. Devillers, C. Timmerer, J. Heuer, and H. Hellwagner,

”Bitstream Syntax Description-Based Adaptation in Streaming

and Constrained Environments,” to appear in IEEE

Transactions on Multimedia, vol. 7, no. 2, April 2005.

[6] M. Ransburg, C. Timmerer, and H. Hellwagner, „Transport

Mechanisms for Metadata-driven Distributed Multimedia

Adaptation,” Proceedings of the First International Conference

on Multimedia Services Access Networks (MSAN'2005).

[7] DANAE Website: http://danae.rd.francetelecom.com

